
ESAIM: M2AN 44 (2010) 573–595 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an/2010012 www.esaim-m2an.org

ANALYSIS OF A SEMI-LAGRANGIAN METHOD FOR THE SPHERICALLY
SYMMETRIC VLASOV-EINSTEIN SYSTEM ∗

Philippe Bechouche
1

and Nicolas Besse
2

Abstract. We consider the spherically symmetric Vlasov-Einstein system in the case of asymptoti-
cally flat spacetimes. From the physical point of view this system of equations can model the formation
of a spherical black hole by gravitational collapse or describe the evolution of galaxies and globular
clusters. We present high-order numerical schemes based on semi-Lagrangian techniques. The conver-
gence of the solution of the discretized problem to the exact solution is proven and high-order error
estimates are supplied. More precisely the metric coefficients converge in L∞ and the statistical distri-
bution function of the matter and its moments converge in L2 with a rate of O(Δt2 + hm/Δt), when
the exact solution belongs to Hm.
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1. Introduction

One of the key outstanding issues in classical general relativity is the determination of the nature of the sin-
gularities that result from gravitational collapse. We consider here the Vlasov-Einstein system, which describes
self-gravitational collisionless matter. In astrophysics this system models the evolution of galaxies and globular
clusters.

Numerical simulation in general relativity is a challenging approach for finding solutions of the Vlasov-Einstein
system that describe realistic physical phenomena such as the critical collapse where there are no rigorous
analytical results, provided that the numerical scheme we use gives the right solution. The Lagrangian methods
called PIC (Particle-In-Cell) methods and its alternatives are the most popular in plasma physics and in the
astrophysic communauty [13–15,24,25,27–29]. In [24], the authors studied numerically the critical collapse for
the Vlasov-Einstein system in Schwarzschild coordinates in the setting of spherically symmetric asymptotically
flat case by means of a PIC method. Rein and Rodewis in [22] proved the convergence of this numerical scheme.
In this paper we study a semi-Lagrangian scheme for the spherically symmetric Vlasov-Einstein system and

Keywords and phrases. Vlasov-Einstein system, semi-Lagrangian methods, convergence analysis, general relativity.

∗ The authors acknowledge financial support from the HYKE project No HPRN-CT-2002-00282 on “Hyperbolic and Kinetic
Equations: Asymptotics, Numerics, Applications”, funded by European Union.
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we shall prove that the approximate solution converges to the exact solution of the continuous counterpart of
the discrete problem when the discretization parameters tend to zero. It seems that semi-Lagrangian schemes
have never been used in this context. Semi-Lagrangian methods have given a lot of satisfactory results in various
fields such as fluids mechanics, plasma physics and atmospheric sciences [4,9,12,30].

There are several reasons to think that semi-Lagrangian methods could present advantages over usual
Lagrangian schemes and thus provide a useful tool for the community of people who work on general relativity.
Firstly, since the question of critical collapse is quite relevant in general relativity, it would be worthwhile to
develop different schemes to really see whether theses new schemes can confirm the previous results or whether
they could deliver new effects. Secondly, as it has been pointed out in [14], where Lagrangian PIC methods have
been used, the development of codes which solve the Vlasov equation directly in phase-space would be the best
way to get more accurate results since convergence and high-order accuracy properties of theses schemes are
better controlled and understood. For semi-Lagrangian schemes we can refer to [5,6,8]. The simulations based
on the well-known Particle-In-Cell (PIC) methods [11,18], have difficulties to supply a usefully precise descrip-
tion of the particles acceleration process in the regions of phase-space where nonlinear resonant wave-particle
interaction (where particle and phase velocities are comparable) may impact the properties of the transport.
In fact the PIC codes lack of enough particles to display the detailed phase-space structure of the distribution
function in these regions. Indeed it is well known [19,20,22,26,31,32] that the numerical noise of PIC methods
decreases as O(1/

√
N) where N is the number of particles. On the other hand, direct solution of the Vlasov

partial differential equation itself on a phase-space grid (the so called Vlasov codes) have been found to be a
powerful tool for studying in details the particle dynamics due to the very fine resolution in phase-space (for
example [4,9,10,12]) which is ensuring at any point of the phase-space-mesh by high-order a priori estimates.
Moreover the Vlasov equation is well-known to often lead to the filamentation or phase-space mixing process,
which is one of the reasons why Vlasov simulations have been poorly considered, compared to PIC simulations
which are not sensitive to this problem. The distribution function is constant along the characteristic curves
which tend to roll up, so that the phase-space regions where the distribution function has different values, come
close together and steep gradients are thus generated. Furthermore these mechanisms can strongly be amplified
by relativistic effects via strong particle acceleration. In [2] it was also pointed out that the evolution of the
solution can become more and more peaked at some spatial point and very fine grid should be used to resolve
such sharp peaks. As in [2] the authors do not use an adaptive mesh (which changes with time) but a fixed
one, and since the solutions get more and more peaked as time goes on, their grid is not sufficiently fine after a
certain time of the collapse. As a consequence, errors on preserved quantities increase. One way to resolve this
problem and follow the evolution of the solution further in time is to consider adaptive numerical schemes. In
fact, in [10] a wavelet-multiresolution-analysis-based adaptive semi-Lagrangian scheme was developed to solve
a reduced Relativistic Vlasov-Maxwell (RVM) system. In [10] and references therein, it has been shown that
wavelet multiresolution analysis provides a powerful tool to deal with adaptive numerical schemes. Moreover
this reduced RVM system presents a lot of similarities with the reduced Vlasov-Einstein system in the spheri-
cally symmetric asymptotic flat case. Each system is two dimensional in phase space ((r, w) for VE and (x, vx)
for RVM) and each distribution function is parameterized by an invariant, the square of the angular momentum
for VE and the canonical transverse momentum for RVM. The main difference between the two systems comes
from the vector field which generates the Lagrangian flow and the field equations (electromagnetic fields versus
metric coefficients). In a next work we plan to adapt the scheme implemented in [10] according to the semi-
Lagrangian scheme described in this paper to obtain an adaptive semi-Lagrangian Vlasov code which can solve
the reduced Vlasov-Einstein system in spherically symmetric asymptotic flat case with Schwarschild and/or
maximal-areal coordinates.

In the case of the Vlasov-Einstein system the transport is nonlinear in both physical and momentum space.
Therefore the splitting method applied to the advective form of the Vlasov equation is useless and we choose
to solve the full nonlinear (ODEs) by a Newton algorithm for example. With this approach two new difficulties
arise: The first one is that the Lagrangian flow, associated to the Vlasov-Einstein system, is no more incom-
pressible in the phase-space (as it is true for the Vlasov-Poisson or Vlasov-Maxwell system) and thus the control
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of the Jacobian of the flow is crucial. The second one is that we cannot use the methodology developed in [5,6,8]
based on the splitting technique to prove the stability of the scheme. Therefore the present paper constitutes a
new step in the development of the theory of the convergence of semi-Lagrangian schemes.

In this paper we present a semi-Lagrangian scheme for the Vlasov-Einstein system in Schwarzschild coordi-
nates for the spherically symmetric asymptotically flat case. Even though it might be more valuable to con-
sider maximal-areal coordinates as in [2,14] because the coordinates can penetrate the event-horizon whereas
Schwarzchild coordinates cannot, we conjecture that the convergence proof can be done with maximal-areal
coordinates as the degree of nonlinearity and regularity for the vector field (which generates the Lagrangian
flow) and the metric coefficient equations are quite similar.

The paper is organized as follows. In the first section we give some basic informations about the spherically
symmetric Vlasov-Einstein system in the asymptotically flat case. In the second section, we present the numer-
ical approximation of the solution and in the third section we give the convergence theorem. Finally the last
section is devoted to the convergence proof and the statement of error estimates.

2. The Vlasov-Einstein system in Schwarzschild coordinates

We consider the Vlasov-Einstein system in spherical symmetry in the case of asymptotically flat spacetimes.
Using Schwarzschild coordinates, the non-negative statistical distribution function f of a large ensemble of fully
relativistic particles satisfies the set of two-dimensional Vlasov equations

∂tf + eμ−λ w

γ
∂rf +

(
−λ̇w − eμ−λμ′γ + eμ−λ �

r3γ

)
∂wf = 0, ∀� ∈ R+, (2.1)

where the three-dimensional distribution function f = f(t, r, w, �) depends on the radial position r, the radial
velocity w and the square of the angular momentum � which is an invariant of the system. The relativistic
factor γ reads

γ =

√
1 + w2 +

�

r2
,

while the metric coefficients λ = λ(t, r) and μ = μ(t, r) determine the gravitational field. The solution of the
Vlasov equation (2.1) is launched by the initial condition

f(0, r, w, �) = f0(r, w, �),

where f0 is a spherically symmetric, non-negative, continuously differentiable and compactly supported function,
such that

4π2

∫
�≤r

∫
R×R+

γf0(�, w, �)d� dw d� <
r

2
, r ≥ 0. (2.2)

This last condition will be justified further. The assumption on asymptotic flatness is expressed as

lim
r→∞λ(t, r) = lim

r→∞μ(t, r) = 0, t ≥ 0. (2.3)

Moreover we suppose that
λ(t, 0) = 0, t ≥ 0. (2.4)

Using boundary conditions (2.3)–(2.4), the Einstein equations can be solved explicitly for the metric coefficients μ
and λ and their derivatives. Therefore the integrated Einstein equations read

e−2λ(t,r) = 1 − 2m(t, r)
r

(2.5)
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and

μ(t, r) = −
∫ ∞

r

μ′(t, s)ds (2.6)

where

μ′(t, r) = e2λ(t,r)

(
m(t, r)

r2
+ 4πrp(t, r)

)
(2.7)

and

m(t, r) = 4π

∫ r

0

s2ρ(t, s)ds. (2.8)

In equation (2.7) we denote by μ′ the partial derivative with respect to the space variable r. The mass-energy
density ρ and the density of the radial pressure p are defined by

ρ(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

γf(t, r, w, �)d� dw, (2.9)

p(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

w2f(t, r, w, �)
d� dw

γ
· (2.10)

Redundant but useful expressions to obtain a priori estimates on partial derivatives of λ are

λ′(t, r) = e2λ(t,r)

(
−m(t, r)

r2
+ 4πrρ(t, r)

)
, (2.11)

and
λ̇ = −4πreλ+μj, (2.12)

where the radial mass current density is defined by

j(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

wf(t, r, w, �)d� dw, (2.13)

and where λ̇ denotes the partial derivative of λ with respect to the time variable t. Note that the assumption (2.2)
guarantees the positivity of the right hand side of equation (2.5) and that the ADM mass m(t,∞) is conserved.
In other words it means that no trapped surfaces are present initially. More details on the derivation of this
system can be found in [21].

Using the notation z = (r, w, �), we define by Z(s; t, z) = (R, W, L)(s; t, r, w, �) the solution of the following
differential equations of first order

dR

ds
(s) = Fr(s, Z(s)) = e(μ−λ)(s,R(s)) W (s)

γ(Z(s))
, (2.14)

dW

ds
(s) = Fw(s, Z(s)) = −λ̇(s, R(s))W (s) − e(μ−λ)(s,R(s))μ′(s, R(s))γ(Z(s))

+ e(μ−λ)(s,R(s)) L(s)
R3(s)γ(Z(s))

, (2.15)

dL

ds
(s) = F�(s, Z(s)) = 0, (2.16)

with the initial condition Z(t; t, z) = z and z = (r, w, �) ∈ Q = R+ × R × R+. Let us set F = (Fr , Fw, F�), the
vector field which generates the characteristic flow Z(s; t, z). Then the system (2.14)–(2.16) can be written in
compact form as

dZ

ds
(s) = F (s, Z(s)). (2.17)
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Therefore the Vlasov equation (2.1), which expresses the fact that the distribution function f remains constant
along the integral curves of the vector field F is equivalent to

f(t, r, w, �) = f(s, (R, W, L)(s; t, r, w, �)) = f(s, Z(s; t, z)). (2.18)

Note that the quantity L is conserved along the characteristics so that the characteristic system (2.14)–(2.16)
is essentially two dimensional. While distribution function f is constant along the characteristic curves, the
characteristic flow is not volume preserving. More exactly we have:

Lemma 2.1. Let Z(·; t, z) = (R, W, L)(·; t, r, w, �) denote the solution of the characteristic system associated
to (2.1) with Z(t; t, z) = z ∈ Q = R+ × R × R+. Then

det
∂Z

∂z
(s; t, z) = eλ(t,r)−λ(s,R(s;t,z)).

As an immediate consequence the following quantity

4π2

∫
eλ(t,r)f(t, r, w, �)dr dw d�

related to the number of particles is conserved. Let us now give a local in time existence result and some
useful a priori estimates for the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat
spacetimes.

Theorem 2.1. Let us suppose that f0 is a non-negative, spherically symmetric, compactly supported function
in C 1(Q) ∩ Hm(Q), which satisfies (2.2), then there exists a unique, regular, spherically symmetric, compactly
supported function f ∈ C 1([0, T ]×Q)∩Hm

loc([0, T ]×Q) which satisfies the Vlasov-Einstein system (2.1) on [0, T ]
with f(0, r, w, �) = f0(r, w, �). Moreover we have ρ, p, j ∈ C 1([0, T ]×R+) and m, λ, μ ∈ C 2([0, T ]×R+) as
functions of t and r.

Proof. We refer to [21,22] for the proof in continuously differentiable functions space and to [16] for the proof
in Sobolev spaces. �

In fact, Theorem 2.1 is also true if we suppose that

4π2

∫
�≤r

∫
R×R+

γf0(�, w, �)d� dw d� <
r

2I
, r ≥ 0, I > 1, (2.19)

instead of (2.2). Moreover we have the following lemma.

Lemma 2.2. There exists I > 1 such that

4π2

∫
�≤r

∫
R×R+

γf(t, �, w, �)d� dw d� <
r

2I
, r ≥ 0, ∀t ∈ [0, T ]. (2.20)

Proof. We have

m(t, r) = 4π2

∫
�≤r

∫
R×R+

γf(t, �, w, �)d� dw d� = 4π

∫ r

0

s2ρ(t, s)ds

≤ m(t,∞) = H.

The last term is the ADM mass which is an invariant quantity of the system, independent of time t. Let
R > 0 be such that R > 4m(t,∞) = 4H , then the function λ(t, r) ∈ C 2([0, T ] × [0, R]) is bounded and
there exists a constant M > 0 such that 0 ≤ |λ(t, r)| < M , ∀t ∈ [0, T ], ∀r ≤ R. Therefore the expression
m(t, r) = r(1 − e−2λ(t,r))/2 implies 0 ≤ m(t, r) < r(1 − e−2M )/2. Now let us choose I = min{2, (1− e−2M )−1}.
Then we get 0 ≤ m(t, r) < r/(2I), ∀t ∈ [0, T ], ∀r ∈ R

+. �
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Remark 2.1. It is proven in [21] that for appropriate initial datum the Vlasov-Einstein system launches a
unique smooth solution in C 1. This solution can be extended in time as long as the density ρ or the momentum
support is bounded. A smallness assumption on the initial data allows to get a global geodesically complete
solution which decays to flat Minkowski space when time goes to infinity [21]. In [23] it is proven that if a
solution of the spherically symmetric Vlasov-Einstein system develops a singularity then the first singularity
has to appear at the center of the symmetry. Such a break-down of the solution in a particular system of
coordinates may not have anything to do with a true spacetime singularity where some geometric quantity or
curvature invariants such that the Kretschmann scalar RαβγδR

αβγδ (Rαβγδ is the Riemann curvature tensor)
should blow up. However the general picture is that Schwarzschild coordinates are singularity avoiding and the
standard but still unproven conjecture is that the global existence holds in these coordinates.

Let us now consider the Vlasov-Einstein system (2.1) in variables (r, w, �), with an additional assumption on
the support of the initial data described as follows:

supp f0 ⊂ [rmin, rmax] × [wmin, wmax] × [�min, �max], rmin > 0, �min > 0. (2.21)

Let T > 0 be fixed such that Theorem 2.1 is verified, we then have following a priori estimates.

Lemma 2.3. There exists a constant K ≥ 1 such that for all t ∈ [0, T ] and r ≥ 0,

ρ(t, r), p(t, r), |j(t, r)|, e2λ(t,r), |λ̇(t, r)|, |λ′(t, r)|, |λ′′(t, r)|, |λ̇′(t, r)|, |μ(t, r)|, |μ′(t, r)|, |μ′′(t, r)| ≤ K,

and for t ∈ [0, T ] and (r, w, �) ∈ supp f0,

R(t; 0, r, w, �),
1

R(t; 0, r, w, �)
, |W (t; 0, r, w, �)| ≤ K.

Proof. Let see [22] for the proof. �

3. Numerical approximation

In this part we describe the numerical scheme.

3.1. Numerical scheme

Let Ω (resp. Ωr) be the domain of the phase-space (resp. the radial component of the total phase-space Ω)
on which we compute the numerical solution and Mh a discretization of Ω where h denotes the space-phase
discretization parameter, in other words the maximum size of the cells of the mesh. Let us introduce the Sobolev
spaces Hm equipped with the following norm

‖f‖Hm =

(∫
R

3
ξ

(1 + |ξ|2)m|f̂(ξ)|2dξ

)1/2

where f̂ is the Fourier transform of f .
In order to construct our algorithm, we need to introduce an approximation operator Πh defined on the

Sobolev space Hm, m ∈ N. Let us consider a sequence of finite dimensional spaces Vh ⊂ Hm such that⋃
h≥0 Vh = Hm. If the sequence {Ψk} is a basis of Vh, we then have

Πh : Hm(Ω) −→ Vh

f −→ Πhf =
∑

k ckΨk.

In addition we make the following assumptions on Πh.
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Assumptions 3.1. Let g ∈ Hm(Ω), and p, k, m ∈ N with k ≤ m and α ∈ [0, 1], then
(i) Regularity:

Πhg ∈ C p,α(Ω) ∩ Hk(Ω). (3.1)

(ii) Consistency and accuracy:

‖Πhg − g‖Hk(Ω) ≤ chm−k‖g‖Hm(Ω). (3.2)

(iii) Stability:
‖Πhg‖Hk(Ω) ≤ ‖g‖Hk(Ω). (3.3)

Moreover we use the following property [17]: there exists a constant K1 > 0 such that

∀vh ∈ Vh, ‖vh‖Hm+1(Ω) ≤ K1h
−1‖vh‖Hm(Ω). (3.4)

This last inequality is called an inverse inequality. Such reconstruction operator Πh exists and we can refer to [3],
for an example in the context of wavelets multiresolution analysis. In fact in [3], it is shown that we can construct
a multiresolution analysis in Hs where the orthonormal wavelets basis is compactly supported and have the
desired smoothness, and such that the orthogonal projection operator can reproduce all polynomials less or
equal to any fixed order, i.e. has the property of high-order approximation or accuracy. Since our scheme could
use wavelet reconstruction, it can be modified to get an adaptive scheme by adding a step of prediction (which
will consist in predicting the new mesh where the solution will be computed by pushing the characteristic curves
forward) before solving the characteristics backward and a step of wavelets decomposition and data compression
after this latter. This procedure which has been implemented in [10] to obtain a wavelet-multiresolution-analysis-
based adaptive semi-Lagrangian scheme for solving a reduced Relativistic Vlasov-Maxwell system, reveals to be
a useful and powerful tool to deal with steep gradients (which generate small scales) and moving sharp peaks
which occur during the filamentation mechanism and the phase-space mixing process.

In the next section we present a first-order in time scheme and a second-order in time scheme. If the time T
is the final evolution time of Theorem 2.1 and NT ∈ N

∗ the number of time iterations, we then define the time
step Δt = T/NT and the time instant tn = nΔt. Let us suppose that we know fn

h ∈ Vh, an approximation
of the distribution function f on a regular Cartesian mesh Mh of the (r, w, �)-phase-space at time t = tn, the
numerical scheme then describes the way to construct fn+1

h from the known data fn
h .

3.1.1. The first-order scheme in time

Using the fact that f is constant along the characteristic curves (2.18) we define

fn+1
h (r, w, �) := Πhfn

h (Rh(tn), Wh(tn), Lh(tn)), (3.5)

where Zh(tn) = (Rh(tn), Wh(tn), Lh(tn)) is an approximation of the solution of the system (2.14)–(2.16) with
the final condition Zh(tn+1) = (Rh(tn+1), Wh(tn+1), Lh(tn+1)) = (r, w, �) = z ∈ Mh.

In the case of the first-order time discretization, with the notation Zn
h = Zh(tn), we define

Zn+1
h − Zn

h = ΔtFn
h (Zn

h ), (3.6)

where Fn
h = (Fn

h,r, F
n
h,w, Fn

h,�) are obtained by replacing in F (t, .) the quantities λ(t), μ(t), μ′(t) and λ̇(t) at
time t = tn by their approximations λn

h , μn
h, μn

h
′ and λ̇n

h . The metric coefficients λn
h , μn

h, μn
h
′, λ̇n

h and the
mass mn

h are constructed by replacing in equations (2.12) and (2.5)–(2.8) the moments ρ(t), p(t), j(t) by their
approximations ρn

h, pn
h, jn

h , where the latter are computed by replacing in the definition of the moments (2.9)–
(2.10) and (2.13) f(t) by fn

h .
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Remark 3.1.

(1) Note that (λ′)h = λ′
h and ˙(λh) �= (λ̇)h.

(2) Equation (3.6) is a first-order discretization in time (Euler scheme) of the system (2.17).
(3) In fact equation (3.6) is a fixed point problem in the unknown Zn

h . In order to solve this fixed point we
can use a Newton method. A sufficient condition to have local convergence of the Newton algorithm is
that Fn

h ∈ C 1,1(Ω) and that ∇Fn
h is locally invertible or that the Jacobian of Fn

h does not vanish on a
neighbourhood of the solution. In our case we shall show that these conditions are fulfilled by Fn

h .

3.1.2. The second-order scheme in time

Here we present the second-order scheme in time which is composed by two successive first-order schemes in
time.

(1) If we suppose that we know fn
h ∈ Vh we then set

f
n+1/2
h (r, w, �) := Πhfn

h (R̂h(tn), Ŵh(tn), L̂h(tn)), (3.7)

where Ẑh(tn) = (R̂h(tn), Ŵh(tn), L̂h(tn)) is the approximation of the solution of the system (2.14)–(2.16)
with the final condition Ẑh(tn+1/2) = (R̂h(tn+1/2), Ŵh(tn+1/2), L̂h(tn+1/2)) = (r, w, �) = z ∈ Mh. The
unknown Ẑh(tn) is computed using the equation

Ẑ
n+1/2
h − Ẑn

h =
Δt

2
Fn

h (Ẑn
h ). (3.8)

(2) From the distribution function f
n+1/2
h and equations (2.9)–(2.10) and (2.13), we get the moments

ρ
n+1/2
h , p

n+1/2
h , j

n+1/2
h . Using equations (2.12) and (2.5)–(2.8) we obtain λ

n+1/2
h , μ

n+1/2
h , μ

n+1/2 ′
h ,

λ̇
n+1/2
h and consequently we get F

n+1/2
h .

(3) We then set

fn+1
h (r, w, �) := Πhfn

h (Rh(tn), Wh(tn), Lh(tn)), (3.9)

where Zh(tn) = (Rh(tn), Wh(tn), Lh(tn)) is the approximation of the solution of the system (2.14)–
(2.16) with the final condition Zh(tn+1) = (Rh(tn+1), Wh(tn+1), Lh(tn+1)) = (r, w, �) = z ∈ Mh. The
new unknown Zh(tn) is approximated by the expression

Zn+1
h − Zn

h = ΔtF
n+1/2
h (Zn+1/2

h ), (3.10)

with the definition Z
n+1/2
h = (Zn+1

h + Zn
h )/2.

The fixed point problem (3.8) and (3.10) can also be solved by a Newton algorithm. We shall also show that
the conditions on Fn

h and F
n+1/2
h are fulfilled.

Remark 3.2. Let us note that a similar second-order in time Runge-Kutta semi-Lagrangian scheme with
B-spline interpolation has been successfully implemented to solve a three-dimensional multi-fluid model for gy-
rokinetic turbulence in [7]. Moreover following the derivation of the second-order scheme in time of Section 3.1.2
it is formally possible to write down higher-order schemes in time (with order greater than two) by considering
Runge-Kutta schemes with more than two stages. Obviously such schemes become highly intricate and thus
are more complicated to analyze.
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4. Convergence theorem and A PRIORI error estimates

In this section we give the convergence theorem for the schemes presented in Section 3.1.

Theorem 4.1. Let us assume that f0 ∈ C s+1(Ω) ∩ Hm(Ω) and fulfills the condition (2.19) of Theorem 2.1,
and there exist two constants C1 and C2 such that C1 ≤ h−1Δt ≤ C2. Then the approximation (fh, λh, μh) of
the Vlasov-Einstein system presented in Section 3.1 converges towards the solution of Theorem 2.1 on the time
interval [0, T ] and for k ≤ 1 we have the following error estimates

sup
n≤NT

‖fn
h − f(tn)‖Hk(Ω) � Δts +

hm−k

Δt

sup
n≤NT

{‖λn
h − λ(tn)‖L∞(Ωr), ‖μn

h − μ(tn)‖L∞(Ωr), ‖mn
h − m(tn)‖L∞(Ωr)

}
� Δts +

hm

Δt

sup
n≤NT

{‖ρn
h − ρ(tn)‖Hk(Ωr), ‖pn

h − p(tn)‖Hk(Ωr), ‖jn
h − j(tn)‖Hk(Ωr)

}
� Δts +

hm−k

Δt

with s = 1 for the first-order scheme of Section 3.1.1 and s = 2 for the second-order scheme of Section 3.1.2.

Remark 4.1. The assumption f0 ∈ C s+1(Ω) with s = 1 (resp. s = 2) in Theorem 4.1, is just a technical assump-
tion which is used to bound the terms ‖∂tF‖L∞(0,T ;Hk(Ω)) (resp. ‖∂2

t F‖L∞(0,T ;Hk(Ω)) and ‖∂t∇F‖L∞(0,T ;Hk(Ω))),
with k ≤ 1, in the proof of the first (resp. second) order scheme.

5. Convergence analysis

Let Th < T denote the maximal time on which the approximate solution exists and satisfies the a priori
estimates

2mn
h(r) < r; |λn

h|, |λ′n
h |, |λ̇n

h |, |μn
h|, |μ′n

h | ≤ 2K, n ≤ NTh
, (5.1)

where K is the constant used in Lemma 2.3. Note that we have Th > 0 by continuity in time. Using a reductio
ad absurdum argument, we shall prove that in fact Th = T at the end of Section 5.1. We now decompose the
error En+1 at time tn+1 in three parts as it follows

En+1 = ‖f(tn+1) − fn+1
h ‖X(Ω)

≤ ‖fn(Rn, Wn, Ln) − Πhfn(Rn, Wn, Ln)‖X(Ω)

+ ‖Πh(fn(Rn, Wn, Ln) − fn(Rn
h , Wn

h , Ln
h))‖X(Ω)

+ ‖Πh(fn(Rn
h , Wn

h , Ln
h) − fn

h (Rn
h , Wn

h , Ln
h))‖X(Ω)

= E1 + E2 + E3.

In the above the X-norm will denote some Sobolev Hm-norm.
Let us compute first the interpolation error E1 which depends only on the approximation and accuracy

property (3.2) of the reconstruction operator Πh. From (3.2) we get for k = 0, 1,

E1 = ‖fn(Rn, Wn, Ln) − Πhfn(Rn, Wn, Ln)‖Hk(Ω)

= ‖fn(Zn) − Πhfn(Zn)‖Hk(Ω)

� hm−k‖fn(Zn)‖Hm(Ω)

� hm−k

(
‖det−1∂zZ

n‖L∞(Ω) max
|α|,β≤m

‖∂α
z Zn‖β

L∞(Ω)

)1/2

‖fn‖Hm(Ω)

� hm−k‖fn‖Hm(Ω) � hm−k‖f‖L∞([0,T ];Hm(Ω)). (5.2)
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5.1. Convergence of the first-order in time scheme

Let us first give a proposition which states the boundness of the support of the distribution function.

Proposition 5.1. Under the assumptions (5.1), there exists a constant D, depending on K, but independent
of h and Δt such that

1
Rn

h

, Rn
h , |Wn

h |, Ln
h ≤ D, ∀n ≤ NTh

. (5.3)

Proof. As Fh,� = 0, then Ln
h = L0

h = constant.
From assumptions (5.1) and the first component of (3.6) we get

Rn+1
h − Rn

h = Δteμn
h−λn

h
Wn

h

γn
h

≤ Δte4K .

Obviously we get Rn
h ≤ R0

h + CTh ≤ R0
h + CT , n ≤ NTh

. Now let us bound Rn
h from below. Let us suppose

first that Wn
h < 0. Then using (5.1)

Rn+1
h = Rn

h − Δteμn
h−λn

h
|Wn

h |
γn

h

≥ Rn
h − Δteμn

h−λn
h

≥ Rn
h − CΔt.

If Wn
h > 0 then obviously Rn+1

h ≥ Rn
h . In both case we have Rn+1

h ≥ Rn
h −CΔt which implies Rn

h ≥ R0
h−CTh ≥

R0
h − CT , for all n ≤ NTh

. We have proved that Rn
h is in the ball of center R0 and radius CT . We then have

to choose rmin ≥ CT where rmin is related to the support of f0 as in (2.21). The lower bound is not optimal
because it corresponds to the bad case, Wn

h < 0, ∀n ≤ NTh
. In fact as the sign of Wn

h varies with n the lower
bounds should be better. Now let us bound Wn

h . Using assumptions (5.1), and the fact that Rn
h is bounded

from below, for the second component of (3.6) we get

Wn+1
h − Wn

h = Δt

(
−λ̇n

hWn
h − μn′

h γn
h eμn

h−λn
h + eμn

h−λn
h

Ln
h

(Rn
h)3γn

h

)
≤ CΔt(1 + |Wn

h |).

The above implies that |Wn+1
h | ≤ |W 0

h |(1 + CΔt)NTh + CTh ≤ |W 0
h |eCTh + CTh ≤ |W 0

h |eCT + CT , which ends
the proof. �

Let us now prove the stability of the scheme which allows to control the accumulation error E3.

Lemma 5.1. Under the assumptions (5.1), the scheme is H3-stable.

Proof. In fact, in the sequel, we can see that the H2-stability is enough to show the convergence of the scheme.
In that case the stability property (3.3) with H2-norm should be enough. Nevertheless, when we compute the
term ‖fn+1

h ‖H2(Ω) appears the term |∂wfn
h ||∂2

rWn
h | which leads us to evaluate the integral∫

Ω

|∂wfn
h |2|∂2

rfn
h |2 dr dw dl. (5.4)

In order get the H2-stability we need to have an expression which depends only on the power of ‖fn
h ‖H2(Ω).

Nevertheless it seems not possible that the term (5.4) could be bounded by a power of ‖fn
h ‖H2(Ω).
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Using the continuous Sobolev embedding H2(R3) ↪→ L∞(R3) we get the estimate∫
Ω

|∂wfn
h |2|∂2

rfn
h |2 dr dw dl ≤ ‖fn

h ‖2
H3(Ω)‖fn

h ‖2
H2(Ω)

which suggests us to deal with the H3-stability. In that case, the bad term becomes |∂wfn
h ||∂3

rWn
h |, and leads

to the integral term ∫
Ω

|∂wfn
h |2|∂3

rfn
h |2 dr dw dl

which is now bounded by a power of ‖fn
h ‖H3(Ω). Therefore we should seek the stability of the scheme

in H3-norm. Now, since the flow is not volume preserving, in order to obtain H3-stability, we should con-
trol the Jacobian of the approximate flow Zh and its partial derivatives ∂α

z Zn
h with |α| ≤ 3. Let us first compute

the Jacobian matrix ∂zZ
n
h = (∇zR

n
h,∇zW

n
h ,∇zL

n
h)T . By differentiating (3.6) we have

∂zZ
n
h = (I + Δt∂zF

n
h (Zn

h ))−1 (5.5)

=
1
D

⎛⎝ 1 + Δt∂wFn
h,w −Δt∂wFn

h,r Δt2∂wFn
h,r∂lF

n
h,w − Δt(1 + Δt∂wFn

h,w)
−Δt∂rF

n
h,w 1 + Δt∂rF

n
h,r Δt2∂lF

n
h,r∂rF

n
h,w − Δt(1 + Δt∂rF

n
h,r)

0 0 D

⎞⎠
where D denotes the Jacobian, equal to

D = 1 + Δt(∂rF
n
h,r + ∂wFn

h,w) + Δt2(∂rF
n
h,r∂wFn

h,w − ∂rF
n
h,w∂wFn

h,r).

We now need to compute all the second and third derivatives of Zn
h . In order to bound ∂α

z Zn
h with |α| ≤ 3,

we need to estimate the approximate force field Fn
h which generates the approximate flow Zn

h as its partial
derivatives. Therefore we need the following lemma which estimates the partial derivatives of the force field Fn

h

and whose proof is postponed in Appendix A.

Lemma 5.2. Under the assumptions (5.1) there exists a generic constant C, depending on K, but independent
of h and Δt such that for Fn

h,r and Fn
h,w we get the following bounds

‖∂m
r ∂α

w∂β
l Fn

h,r‖L∞(Ω) ≤ C

{
1 if m ≤ 1
‖fn

h ‖Hm(Ω) if m > 1

‖∂m
r ∂α

w∂β
l Fn

h,w‖L∞(Ω) ≤ C‖fn
h ‖Hm+1(Ω).

Remark 5.1. The component Fn
h,w loses one space derivative with respect to Fn

h,r since the expression for Fn
h,w

involves λ̇n
h and μn′

h . The derivatives with respect to the variables w and l do not make lose spatial derivatives.

By a straightforward but lengthy calculation, using Lemma 5.2, the computation of ∂α
z Zn

h for |α| ≤ 3, the
inverse inequality (3.4) and assuming that the ratio Δt/h is bounded, we get the following proposition

Proposition 5.2. Under the assumptions (5.1), there exists a generic constant C, depending on K, but inde-
pendent of h and Δt such that

‖D‖L∞(Ω) ≤ 1 + CΔt‖fn
h ‖H1(Ω)

‖∂α
z D‖L∞(Ω) ≤ (1 + Δt‖fn

h ‖H2(Ω))CΔt‖fn
h ‖H3(Ω), 1 ≤ |α| ≤ 2,

‖∂α
zi

Zn
h j‖L∞(Ω) ≤ δij + (1 + Δt‖fn

h ‖H1(Ω))CΔt‖fn
h ‖H2(Ω), |α| = 1,

‖Y ‖L∞(Ω) ≤ (1 + Δt‖fn
h ‖H3(Ω))CΔt‖fn

h ‖H3(Ω) ∀Y ∈ {∂α
z Zn

h | 2 ≤ |α| ≤ 3} \{∂3
rWn

h

}
‖∂3

rWn
h ‖L2(Ω) ≤ (1 + Δt‖fn

h ‖H3(Ω))CΔt‖fn
h ‖H3(Ω).
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Now we are ready to compute the H3-norm of fn+1
h . Note that with our definition, the H3-norm of a

function g is given by

‖g‖2
H3(Ω) = ‖g‖2

H2(Ω) + ‖∇g‖2
H2(Ω)

= ‖g‖2
L2(Ω) + 3‖∇g‖2

L2(Ω) + 3‖Δg‖2
L2(Ω) + ‖∇Δg‖2

L2(Ω). (5.6)

If we compute ∇fn
h (Zn

h ), Δfn
h (Zn

h ), ∇Δfn
h (Zn

h ), use the bounds of Proposition 5.2 and the inverse inequal-
ity (3.4) and if we assume that the ratio Δt/h is bounded, we obtain the following bounds

‖fn
h (Zn

h )‖L2(Ω) ≤ ‖D‖L∞(Ω)‖fn
h ‖L2(Ω)

≤ ‖fn
h ‖L2(Ω) + CΔt‖fn

h ‖L2(Ω)‖fn
h ‖H1(Ω); (5.7)

‖∇(fn
h (Zn

h )
)‖L2(Ω) ≤ ‖D‖L∞(Ω)‖∇fn

h ‖L2(Ω)‖∇Zn
h‖L∞(Ω)

≤ ‖∇fn
h ‖L2(Ω) + CΔt‖fn

h ‖H2(Ω)‖fn
h ‖H1(Ω)(1 + Δt‖fn

h ‖H1(Ω)); (5.8)

‖Δ(fn
h (Zn

h )
)‖L2(Ω) ≤ ‖∇2fn

h (Zn
h )
(∇Zn

h

)2 + ∇fn
h (Zn

h )∇2Zn
h‖L2(Ω)

≤ ‖Δfn
h ‖L2(Ω) + CΔt‖fn

h ‖3
H3(Ω)(1 + Δt‖fn

h ‖H3(Ω)); (5.9)

‖∇Δ
(
fn

h (Zn
h )
)‖L2(Ω) ≤ ‖∇3fn

h (Zn
h )
(∇Zn

h

)3 + 2∇2fn
h (Zn

h )∇Zn
h∇2Zn

h + ∇fn
h (Zn

h )∇3Zn
h‖L2(Ω)

≤ ‖∇Δfn
h ‖L2(Ω) + CΔt‖fn

h ‖4
H3(Ω)(1 + Δt‖fn

h ‖H3(Ω)) + ‖∂wfn
h ‖L∞(Ω)‖∂3

rWn
h ‖L2(Ω)

≤ ‖∇Δfn
h ‖L2(Ω) + CΔt‖fn

h ‖4
H3(Ω)(1 + Δt‖fn

h ‖H3(Ω)). (5.10)

If we set Y n+1 = ‖fn+1
h ‖H3(Ω), inequalities (5.6)–(5.10) then lead to

Y n+1 ≤ (1 + CΔt(Y n)4
)
Y n. (5.11)

If we sum this inequality with respect to n, we obtain

Y n+1 ≤ Y 0 + CΔt

n∑
l=0

Y l5. (5.12)

Therefore, applying Theorem 4.2.1 [1] with r = 1, p = 1, q = Y 0, and H1(n + 1, {Y n}n≥0) =
∑n

l=0 CΔtY l5,
yields

Y n+1 ≤
(

1
Y 04 − 4CT

)−1/4

.

We have stability only if T < TY0 = 1/
(
4CY 04

)
. Therefore the scheme is H3-stable if we choose Th as the

minimum of TY0 and the time Th defined by assumptions (5.1), which completes the proof. �
Now let us compute the term E3 which stands for the accumulation error.

Lemma 5.3. Under the assumptions (5.1) we have

E3 ≤ (1 + CΔt)En.



SEMI-LAGRANGIAN SCHEMES FOR VLASOV-EINSTEIN SYSTEM 585

Proof. From the stability Lemma 5.1 we have

‖∂zZ
n
h‖L∞(Ω), ‖det−1∂zZ

n
h‖L∞(Ω) ≤ 1 + CΔt.

From above and using (3.3), we get for k = 0, 1,

E3 = ‖Πh(fn(Zn
h ) − fn

h (Zn
h ))‖Hk(Ω)

≤ ‖fn(Zn
h ) − fn

h (Zn
h )‖Hk(Ω)

≤ (1 + CΔt)‖fn − fn
h ‖Hk(Ω)

≤ (1 + CΔt)En,

which ends the proof. �
Let us now compute the term E2 which stands for time discretization error and coupling error linked to

self-consistency.

Lemma 5.4. Under the assumptions (5.1) we have

E2 � Δt2 + ΔtEn.

Proof. For k = 0, 1, we have

E2 = ‖Πh(fn(Zn) − fn(Zn
h ))‖Hk(Ω)

≤ ‖fn(Zn) − fn(Zn
h )‖Hk(Ω)

≤ ‖f‖L∞(0,T ;W 2,∞(Ω))‖Zn − Zn
h‖Hk(Ω)

� ‖Zn − Z̃n‖Hk(Ω) + ‖Z̃n − Zn
h‖Hk(Ω) (5.13)

where Z̃(s) satisfies the following ordinary differential equation

dZ̃

ds
(s) = Fh(s, Z̃(s)), (5.14)

with the final condition Z̃(tn+1) = z, and where

Fh(t, ·) =
NT −1∑
n=0

Fn
h (·)χn(t)

with χn(t) = 1 if t ∈ [tn, tn+1[ and zero elsewhere.
Let us start with the estimate of ‖Z̃n−Zn

h‖Hk(Ω). Let us first show that maxn≤NT ‖∂zZ̃
n‖L∞(Ω) is bounded.

If we differentiate with respect to z the equation

Z̃(t) = z +
∫ t

tn+1
Fh(t, Z̃(s))ds,

using a Gronwall lemma, we then get

‖∂zZ̃‖L∞(tn,tn+1;L∞(Ω)) ≤ eΔt‖∇Fh‖L∞(0,T ;L∞(Ω)) ,
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which is bounded because ‖∇Fh‖L∞(0,T ;L∞(Ω)) is also bounded. Using a second-order Taylor expansion of Z̃n

around t = tn+1, and subtracting it to (3.6) there exists a time t	 ∈ ]tn, tn+1[ such that

0 = Zn
h − Z̃n + Δt

(
Fn

h (Zn
h ) − Fn

h (Z̃n)
)

+
Δt2

2
d2Z̃

dt2
(t	). (5.15)

Since we have

d2Z̃

dt2
(t	) = ∂tFh(t	, Z̃(t	)) + ∂zF

n
h (Z̃(t	))∂zZ̃(t	)

= ∂zF
n
h (Z̃(t	))∂zZ̃(t	),

using (5.15), we get for k = 0, 1,

‖Zn
h − Z̃n‖Hk(Ω) ≤ Δt‖Fn

h (Zn
h ) − Fn

h (Z̃n)‖Hk(Ω) +
Δt2

2
‖∂zF

n
h (Z̃(t	))‖Hk(Ω)‖∂zZ̃(t	)‖L∞(Ω)

� Δt‖Fn
h (Zn

h ) − Fn
h (Z̃n)‖Hk(Ω) + CΔt2

≤ ΔtC̃

(
sup

n≤NT

‖fn
h ‖H2(Ω)

)(
‖Zn

h − Z̃n‖Hk(Ω) + ‖Zn
h − Z̃n‖1/2

Hk(Ω)

)
+ CΔt2.

If Δt is small enough, the above leads to(
(1 − C̃Δt)1/2‖Zn

h − Z̃n‖1/2

Hk(Ω)
− C̃Δt

2(1 − C̃Δt)1/2

)2

≤
(

C +
C̃2

4(1 − C̃Δt)

)
Δt2

which implies

‖Zn
h − Z̃n‖Hk(Ω) ≤

(√
C +

C̃2

4(1 − C̃Δt)
+

C̃

2(1 − C̃Δt)1/2

)2

Δt2

1 − C̃Δt
� Δt2, (5.16)

and ends the estimate of the term ‖Z̃n − Zn
h‖Hk(Ω).

Let us now estimate the term ‖Z̃n − Zn‖Hk(Ω). Using (2.17) and (5.14) we have

Z(t) − Z̃(t) =
∫ t

tn+1

[(
F (s, Z(s)) − F (s, Z̃(s))

)
+
(
F (s, Z̃(s)) − Fh(s, Z̃(s))

)]
ds.

By taking the Hk-norm in the z variable we get

‖Z(t) − Z̃(t)‖Hk(Ω) ≤ ‖F‖L∞(0,T ;W 2,∞(Ω))

∫ t

tn+1
‖Z(s) − Z̃(s)‖Hk(Ω)

+ ‖det−1∂zZ̃‖L∞([0,T ]×Ω)‖∂zZ̃‖L∞([0,T ]×Ω)

∫ t

tn+1
‖F (s) − Fh(s)‖Hk(Ω)ds.

By taking the L∞-norm in the t variable on the time interval [tn, tn+1] we get

‖Z − Z̃‖L∞(tn,tn+1;Hk(Ω)) � Δt‖Z − Z̃‖L∞(tn,tn+1;Hk(Ω)) + Δt‖F − Fh‖L∞(tn,tn+1;Hk(Ω)).
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If Δt is small enough then

‖Zn − Z̃n‖Hk(Ω) ≤ ‖Z − Z̃‖L∞(tn,tn+1;Hk(Ω))

≤ CΔt

1 − Δt
‖F − Fh‖L∞(tn,tn+1;Hk(Ω)). (5.17)

Using a Taylor expansion around the time t, there exists t	 ∈ ]tn, tn+1[ such that

(F − Fh)(t) = (F − Fh)(tn) − (t − tn)∂tF (t	).

By taking the norm of the previous equation, we get

‖F − Fh‖L∞(tn,tn+1;Hk(Ω)) ≤ ‖Fn − Fn
h ‖Hk(Ω) + Δt‖∂tF‖L∞(0,T ;Hk(Ω)).

From the above and the estimate (5.17), we obtain

‖Zn − Z̃n‖Hk(Ω) � Δt2 + Δt‖Fn − Fn
h ‖Hk(Ω). (5.18)

From the definition of F and Fn
h , using Proposition 5.1, the bounds (5.1) and Lemma 2.3, we get

‖Fn − Fn
h ‖Hk(Ω) � ‖μn

h − μn‖Hk(Ωr) + ‖μn′
h − μn′‖Hk(Ωr) + ‖λn

h − λn‖Hk(Ωr) + ‖λ̇n
h − λ̇n‖Hk(Ωr). (5.19)

Using the integrated Einstein equations (2.5)–(2.7) and (2.12), the bounds of the characteristics (5.3) and
Lemma 2.3, the inequality (5.19) becomes

‖Fn − Fn
h ‖Hk(Ω) � ‖jn

h − jn‖Hk(Ωr) + ‖ρn
h − ρn‖Hk(Ωr) + ‖pn

h − pn‖Hk(Ωr) + ‖mn
h − mn‖Hk(Ωr). (5.20)

Using the estimate (5.3), Lemma 2.3 and the definition of the moments (2.8)–(2.10) and (2.13), equation (5.20)
becomes

‖Fn − Fn
h ‖Hk(Ω) � ‖fn − fn

h ‖Hk(Ω). (5.21)

Equations (5.21) and (5.18) lead to

‖Zn − Z̃n‖Hk(Ω) � Δt2 + Δt‖fn − fn
h ‖Hk(Ω), (5.22)

which concludes the estimate. By putting together the estimates (5.22), (5.13) and (5.16), we get the desired
result. �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Assembling Lemmas 5.3, 5.4 and the estimate (5.2), we obtain for the global error

En+1 ≤ C(hm−k + Δt2) + (1 + CΔt)En.

By a Gronwall lemma, we obtain for n ≤ NTh
and k = 0, 1,

‖fn − fn
h ‖Hk(Ω) � Δt +

hm−k

Δt
· (5.23)
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From the estimate (5.23) and the following inequalities

‖μn
h − μn‖L2(Ωr), ‖μn′

h − μn′‖L2(Ωr), ‖λn
h − λn‖L2(Ωr),

‖λn′
h − λn′‖L2(Ωr), ‖mn

h − mn‖L2(Ωr), ‖mn′
h − mn′‖L2(Ωr) � ‖fn − fn

h ‖L2(Ω)

we get the second error estimate of Theorem 4.1. Using the estimate (5.23) and the following inequalities

‖ρn
h − ρn‖L2(Ωr), ‖pn

h − pn‖L2(Ωr), ‖jn
h − jn‖L2(Ωr) � ‖fn − fn

h ‖L2(Ω)

we obtain the third error estimates of Theorem 4.1.
Now it remains to establish the assertions on the length Th of our approximation interval. Let us choose h

and Δt such that

Δt +
hm−1

Δt
+

hm

Δt
≤ K

2
and Δt +

hm

Δt
≤ rmin

2
(I − J)

IJ
with K being the constant of Lemma 2.3 and I, J ∈ R such that 1 < J < I. We then have

‖μh‖L∞([0,T ]×Ωr) ≤ ‖μ‖L∞([0,T ]×Ωr) + sup
n≤NT

‖μn
h − μn‖L∞(Ωr) ≤ K +

K

2
=

3K

2
,

‖λh‖L∞([0,T ]×Ωr) ≤ ‖λ‖L∞([0,T ]×Ωr) + sup
n≤NT

‖λn
h − λn‖L∞(Ωr) ≤ K +

K

2
=

3K

2
,

‖μ′
h‖L∞([0,T ]×Ωr) ≤ ‖μ′‖L∞([0,T ]×Ωr) + sup

n≤NT

‖μn′
h − μn′‖L∞(Ωr) ≤ K +

K

2
=

3K

2
,

‖λ′
h‖L∞([0,T ]×Ωr) ≤ ‖λ′‖L∞([0,T ]×Ωr) + sup

n≤NT

‖λn′
h − λn′‖L∞(Ωr) ≤ K +

K

2
=

3K

2
,

‖λ̇h‖L∞([0,T ]×Ωr) ≤ ‖λ̇‖L∞([0,T ]×Ωr) + sup
n≤NT

‖λ̇n
h − λ̇n‖L∞(Ωr) ≤ K +

K

2
=

3K

2
·

Using the property (2.20) we obtain

mn
h(r) = m(tn, r) + (mn

h(r) − m(tn, r))

≤ r

2I
+ Δt +

hm

Δt
<

r

2I
+

r

2
(I − J)

IJ
<

r

2J
·

Thus Th = T since otherwise the approximation interval for (5.1) could be extended beyond Th. �

5.2. Convergence of the second-order in time scheme

The error terms E1 and E3 are of the same type as in the first-order scheme and the proofs can be handled
in the same way. In fact, the proof is identical for the term E1 because it is just an interpolation error which
depends only on the approximation property (3.2) of the reconstruction operator Πh and does not depend of
the time discretization scheme. For the accumulation error E3, we apply successively to each stage of the
second-order two-stage Runge-Kutta scheme (which can be viewed as a succession of two first-order one-stage
Runge-Kutta scheme) stability analysis which have been done for the first-order one-stage Runge-Kutta scheme.
In fact for the second (resp. the first) stage of the second-order Runge-Kutta scheme defined in Section 3.1.2,
by using equation (3.10) (resp. (3.8)) instead of equation (3.6) and following the proof of Proposition 5.1 which
uses equation (3.6), we can show that the estimates (5.3) (resp. estimates (5.3) where we replace Zn

h by Ẑn
h ) still

hold. In order to get H3-stability of the scheme, we proceed as for the proof of Lemma 5.1. The idea is to control
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the norm ‖fn+1
h ‖H3(Ω) by the norm ‖fn

h ‖H3(Ω), thanks to the estimate of the partial derivatives of characteristic
curves ∂α

z Zn
h (with |α| ≤ 3). Following the proof of Lemma 5.1, from equation (3.10), we can control the partial

derivatives ∂α
z Zn

h (with |α| ≤ 3) by the derivatives of the approximate force field F
n+1/2
h which can be controlled

by the term ‖fn+1/2
h ‖H3(Ω) thanks to a lemma of the same type of Lemma 5.2. Using equation (3.8), we can

control ‖fn+1/2
h ‖H3(Ω) by the partial derivatives ∂α

z Ẑn
h (with |α| ≤ 3) which can be controlled by the derivatives

of the approximate force field Fn
h and consequently by the norm ‖fn

h ‖H3(Ω). Therefore we can control the norm
‖fn+1

h ‖H3(Ω) by the norm ‖fn
h ‖H3(Ω) and we obtain the H3-stability of the scheme. Following the proof of

Lemma 5.3, the H3-stability property allows to get the same estimate as the one obtained for the first-order
scheme for the error term E3. Therefore the convergence proof for the second-order scheme differs from the
treatment of the error term E2. In fact, second-order error estimates in time arise from this term E2. The
estimate (5.13) and the equation (5.14) are still valid but we now have

Fh(t, ·) =
NT−1∑
n=0

(
tn+1/2 − t

Δt/2
Fn

h (·) +
t − tn

Δt/2
F

n+1/2
h (·)

)
χn(t)

+
(

t − tn+1/2

Δt/2
Fn+1

h (·) +
tn+1 − t

Δt/2
F

n+1/2
h (·)

)
χn+1/2(t) (5.24)

where χn(t) = 1 if t ∈ [tn, tn+1/2[ and zero elsewhere, and χn+1/2(t) = 1 if t ∈ [tn+1/2, tn+1[ and zero elsewhere.
Let us deal first with the estimate of the term ‖Zn − Z̃n‖Hk(Ω). Let the time t ∈ [tn, tn+1/2[. Using a Taylor

expansion around the time t, there exist t†, t‡ ∈ ]tn, tn+1/2[ such that

(Fh − F )(tn) = (Fh − F )(t) + (tn − t)∂t(F − Fh)(t) +
(tn − t)2

2
∂2

t (Fh − F )(t†) (5.25)

and

(Fh − F )(tn+1/2) = (Fh − F )(t) + (tn+1/2 − t)∂t(F − Fh)(t) +
(tn+1/2 − t)2

2
∂2

t (Fh − F )(t‡). (5.26)

If we multiply equation (5.25) by 2(tn+1/2−t)/Δt, equation (5.26) by 2(t−tn)/Δt, and add the two expressions,
after taking the norm ‖ · ‖L∞([tn,tn+1/2[;Hk(Ω)) we get

‖Fh − F‖L∞([tn,tn+1/2[;Hk(Ω)) ≤ ‖Fn
h − Fn‖Hk(Ω) + ‖Fn+1/2

h − Fn+1/2‖Hk(Ω) + Δt2‖ ∂2
t F‖L∞(0,T ;Hk(Ω))

where we have used the fact that ∂2
t Fh = 0, ∀t ∈ ]tn, tn+1/2[. In the same way we get

‖Fh − F‖L∞([tn+1/2,tn+1[;Hk(Ω)) ≤ ‖Fn+1
h − Fn+1‖Hk(Ω) + ‖Fn+1/2

h − Fn+1/2‖Hk(Ω) + Δt2‖ ∂2
t F‖L∞(0,T ;Hk(Ω)).

Finally we obtain

‖Fh − F‖L∞([tn,tn+1[;Hk(Ω)) ≤ ‖Fn
h − Fn‖Hk(Ω) + ‖Fn+1

h − Fn+1‖Hk(Ω)

+ 2‖Fn+1/2
h − Fn+1/2‖Hk(Ω) + O(Δt2). (5.27)
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From what we have done for the first-order scheme we get

‖Fn+1
h − Fn+1‖Hk(Ω) � ‖fn+1

h − fn+1‖Hk(Ω),

‖Fn
h − Fn‖Hk(Ω) � ‖fn

h − fn‖Hk(Ω),

‖Fn+1/2
h − Fn+1/2‖Hk(Ω) � ‖fn+1/2

h − fn+1/2‖Hk(Ω)

� hm−k + Δt2 + (1 + CΔt)‖fn
h − fn‖Hk(Ω),

so that in the end we get the estimate

‖Zn − Z̃n‖Hk(Ω) � Δt3 + hm−kΔt + Δt(‖fn
h − fn‖Hk(Ω) + ‖fn+1

h − fn+1‖Hk(Ω)). (5.28)

Let us deal now with the term ‖Z̃n − Zn
h‖Hk(Ω). Using a Taylor expansion around the time tn+1/2, there exist

times t†, t‡ ∈ ]tn, tn+1[ such that

Z̃n = Z̃n+1/2 − Δt

2
d
dt

Z̃n+1/2 +
Δt2

8
d2

dt2
Z̃n+1/2 − Δt3

48
d3

dt3
Z̃† (5.29)

and

Z̃n+1 = Z̃n+1/2 +
Δt

2
d
dt

Z̃n+1/2 +
Δt2

8
d2

dt2
Z̃n+1/2 +

Δt3

48
d3

dt3
Z̃‡. (5.30)

If we subtract the expressions (5.30) and (5.29) we get

Z̃n+1 − Z̃n = Δt
d
dt

Z̃n+1/2 +
Δt3

48

(
d3

dt3
Z̃† +

d3

dt3
Z̃‡
)

. (5.31)

Using the second order scheme (3.10)

Zn+1
h − Zn

h = ΔtF
n+1/2
h

(
Zn

h + z

2

)
(5.32)

and the equation

d
dt

Z̃n+1/2 = Fh(tn+1/2, Z̃n+1/2) = F
n+1/2
h (Z̃n+1/2),

and by noting that Zn+1
h = Z̃n+1 = z, the difference of (5.31) and (5.32) gives

0 = Z̃n − Zn
h + Δt

(
F

n+1/2
h (Z̃n+1/2) − F

n+1/2
h

(
Zn

h + z

2

))
+

Δt3

48

(
d3

dt3
Z̃† +

d3

dt3
Z̃‡
)

. (5.33)

The sum ((5.29) + (5.30))/2 gives

Z̃n+1 + Z̃n

2
= Z̃n+1/2 +

Δt2

16

(
d2

dt2
Z̃
 +

d2

dt2
Z̃�

)
. (5.34)
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Using equations (5.33) and (5.34) and taking the norm ‖ · ‖Hk(Ω) we get

‖Z̃n − Zn
h‖Hk(Ω) � Δt‖Fn+1/2

h ‖H3(Ω)‖Z̃n − Zn
h‖Hk(Ω) + Δt3‖Fn+1/2

h ‖H3(Ω)

∥∥∥∥ d2

dt2
Z̃
 +

d2

dt2
Z̃�

∥∥∥∥
Hk(Ω)

+ Δt3‖Fn+1/2
h ‖H3(Ω)

∥∥∥∥ d3

dt3
Z̃† +

d3

dt3
Z̃‡
∥∥∥∥

Hk(Ω)

≤ Δt C

(
sup

n≤NT

‖fn
h ‖H3(Ω)

)(
‖Z̃n − Zn

h‖Hk(Ω) + Δt2

{∥∥∥∥ d2

dt2
Z̃
 +

d2

dt2
Z̃�

∥∥∥∥
Hk(Ω)

+
∥∥∥∥ d3

dt3
Z̃† +

d3

dt3
Z̃‡
∥∥∥∥

Hk(Ω)

})
. (5.35)

From estimate of the last two terms of the right hand side of the inequality (5.35) given in Appendix B and
assuming that Δt/h is bounded, an estimate of the term ‖Z̃n − Zn

h‖Hk(Ω) gives

‖Z̃n − Zn
h‖Hk(Ω) � Δt‖Z̃n − Zn

h‖Hk(Ω) + Δt3

+ Δt

(
‖fn

h − fn‖Hk(Ω) +
∥∥∥fn+1/2

h − fn+1/2
∥∥∥

Hk(Ω)
+
∥∥fn+1

h − fn+1
∥∥

Hk(Ω)

)
� Δt3 + hm−kΔt + Δt

(
‖fn

h − fn‖Hk(Ω) +
∥∥fn+1

h − fn+1
∥∥

Hk(Ω)

)
.

Finally the global error En+1 has the following bound

En+1 ≤ C(hm−k + Δt3 + hm−kΔt) + (1 + CΔtEn) + CΔtEn+1

≤ C

1 − CΔt
(hm−k + Δt3 + hm−kΔt) +

(
1 + CΔt

1 − CΔt

)
En

� hm−k

Δt
+ Δt2 + hm−k +

(
1 + CΔt

1 − CΔt

)NT

E0

� Δt2 +
hm−k

Δt

if we suppose that E0 = O(hm−k). The end of the proof is the same as for the first order.

6. Conclusion

In this paper we have presented the convergence analysis and a priori error estimates of a high-order semi-
Lagrangian scheme to solve the reduced Vlasov-Einstein system for the spherically symmetric asymptotically
flat case in Schwarzschild coordinates. This work is the starting point for further studies. In fact, following
what has been done in [10], we shall modify the present scheme to obtain an adaptive semi-Lagrangian scheme
allowing to solve the reduced Vlasov-Einstein for the spherically symmetric asymptotically flat case system in
Schwarzschild and/or maximal-areal coordinates. Therefore we can numerically study critical collapse phenom-
ena for collisionless matter and compare the results with other similar simulations [2,14,24].
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A. Proof of Lemma 5.2

Proof. It follows from the definition of (Fn
h,r, F

n
h,w), obtained by the discretization of (2.14) and (2.15), the

bounds

‖∂m
r ∂α

w∂β
l Fn

h,r‖L∞(Ω) ≤ C

{
1 if m ≤ 1
‖μn(m)

h ‖L∞(Ωr) + ‖λn(m)

h ‖L∞(Ωr) if m > 1

≤ C
(
‖pn(m−1)

h ‖L∞(Ωr) + ‖ρn(m−1)

h ‖L∞(Ωr)

)
≤ C

(‖ρn
h‖Hm(Ωr) + ‖pn

h‖Hm(Ωr)

)
≤ C‖fn

h ‖Hm(Ω).

‖∂m
r ∂α

w∂β
l Fn

h,w‖L∞(Ω) ≤ C
(
‖μn(m)

h ‖L∞(Ωr) + ‖λn(m)

h ‖L∞(Ωr) + ‖μn(m+1)

h ‖L∞(Ωr) + ‖λ̇n(m)

h ‖L∞(Ωr)

)
≤ C

(
‖pn(m−1)

h ‖L∞(Ωr) + ‖ρn(m−1)

h ‖L∞(Ωr) + ‖pn(m)

h ‖L∞(Ωr) + ‖jn(m)

h ‖L∞(Ωr)

)
≤ C

(‖ρn
h‖Hm(Ωr) + ‖pn

h‖Hm+1(Ωr) + ‖jn
h‖Hm+1(Ωr)

)
≤ C‖fn

h ‖Hm+1(Ω). �

B. Estimate of the term ‖Z̃n − Zn
h‖Hk(Ω)

Let us estimate the last two terms of the right hand side of the inequality (5.35). We first begin with the
second term and we only give an estimate of the term

∥∥∥ d2

dt2 Z̃

∥∥∥

Hk(Ω)
. The proof is the same for the term∥∥∥ d2

dt2 Z̃�
∥∥∥

Hk(Ω)
. We have

∥∥∥∥ d2

dt2
Z̃


∥∥∥∥
Hk(Ω)

≤
∥∥∥∂tFh(t
, Z̃
)

∥∥∥
Hk(Ω)

+
∥∥∥∇Fh(t
, Z̃
)Fh(t
, Z̃
)

∥∥∥
Hk(Ω)

�
∥∥∥∂tFh(t
, Z̃
)

∥∥∥
Hk(Ω)

+
∥∥∥Fh(t
, Z̃
)

∥∥∥2

H2(Ω)

≤
∥∥∥∂tFh(t
, Z̃
)

∥∥∥
Hk(Ω)

+ C

(
sup

n≤NT

‖fn
h ‖H2(Ω)

)
. (B.1)

Let us estimate
∥∥∥∂tFh(t
, Z̃
)

∥∥∥
Hk(Ω)

. From the definition (5.24) we have

∥∥∥∂tFh(t
, Z̃
)
∥∥∥

Hk(Ω)
≤

2
∥∥∥Fn+1/2

h (Z̃
) − Fn
h (Z̃
)

∥∥∥
Hk(Ω)

Δt
+

2
∥∥∥Fn+1

h (Z̃
) − F
n+1/2
h (Z̃
)

∥∥∥
Hk(Ω)

Δt

≤
2
∥∥∥Fn

h (Z̃
) − Fn(Z̃
)
∥∥∥

Hk(Ω)

Δt
+

2
∥∥∥Fn+1

h (Z̃
) − Fn+1(Z̃
)
∥∥∥

Hk(Ω)

Δt

+
4
∥∥∥Fn+1/2

h (Z̃
) − Fn+1/2(Z̃
)
∥∥∥

Hk(Ω)

Δt
+

2
∥∥∥Fn+1/2(Z̃
) − Fn(Z̃
)

∥∥∥
Hk(Ω)

Δt

+
2
∥∥∥Fn+1/2(Z̃
) − Fn+1(Z̃
)

∥∥∥
Hk(Ω)

Δt
·
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Therefore we have

∥∥∥∂tFh(t
, Z̃
)
∥∥∥

Hk(Ω)
≤

C
∥∥∥fn+1/2

h − fn+1/2
∥∥∥

Hk(Ω)

Δt
+ C

∥∥∥∂tF (·, Z̃
)
∥∥∥

L∞(0,T ;Hk(Ω))

+
C ‖fn

h − fn‖Hk(Ω)

Δt
+

C
∥∥fn+1

h − fn+1
∥∥

Hk(Ω)

Δt
·

Now we only give an estimate of the term
∥∥∥ d3

dt3 Z̃†
∥∥∥

Hk(Ω)
, since the proof is the same for the term

∥∥∥ d3

dt3 Z̃‡
∥∥∥

Hk(Ω)
.

We obtain

∥∥∥∥ d3

dt3
Z̃†
∥∥∥∥

Hk(Ω)

≤
∥∥∥∂2

t Fh(t†, Z̃†)
∥∥∥

Hk(Ω)
+2
∥∥∥∇∂tFh(t†, Z̃†)Fh(t†, Z̃†)

∥∥∥
Hk(Ω)

+
∥∥∥∇Fh(t†, Z̃†)∂tFh(t†, Z̃†)

∥∥∥
Hk(Ω)

+
∥∥∥∇2Fh(t†, Z̃†)|Fh(t†, Z̃†)|2

∥∥∥
Hk(Ω)

+
∥∥∥|∇Fh(t†, Z̃†)|2Fh(t†, Z̃†)

∥∥∥
Hk(Ω)

� ‖Fh‖L∞(0,T ;W 1,∞(Ω))

∥∥∥∇∂tFh(t†, Z̃†)
∥∥∥

Hk(Ω)
+ ‖∇Fh‖L∞([0,T ]×Ω)

∥∥∥∂tFh(t†, Z̃†)
∥∥∥

Hk(Ω)

+ ‖Fh‖L∞(0,T ;H3(Ω))

∥∥∥∂tFh(t†, Z̃†)
∥∥∥

L2(Ω)
+ ‖Fh‖2

L∞([0,T ]×Ω)

∥∥Fh(t†)
∥∥

H3(Ω)

+ ‖Fh‖2
L∞(0,T ;W 1,∞(Ω))

∥∥Fh(t†)
∥∥

H2(Ω)
+ ‖Fh‖2

L∞(0,T ;W 1,∞(Ω)) ‖Fh‖Hk(Ω)

≤ C

(
sup

n≤NT

‖fn
h ‖H3(Ω)

)(∥∥∥∇∂tFh(t†, Z̃†)
∥∥∥

Hk(Ω)
+
∥∥∥∂tFh(t†, Z̃†)

∥∥∥
Hk(Ω)

+ 1
)

.

The estimate of the term
∥∥∥∂tFh(t†, Z̃†)

∥∥∥
Hk(Ω)

gives the same result as for the term
∥∥∥∂tFh(t
, Z̃
)

∥∥∥
Hk(Ω)

. We

then have

∥∥∥∇∂tFh(t†, Z̃†)
∥∥∥

Hk(Ω)
≤

2
∥∥∥∇F

n+1/2
h (Z̃†) −∇Fn

h (Z̃†)
∥∥∥

Hk(Ω)

Δt
+

2
∥∥∥∇Fn+1

h (Z̃†) −∇F
n+1/2
h (Z̃†)

∥∥∥
Hk(Ω)

Δt

≤
2
∥∥∥∇Fn

h (Z̃†) −∇Fn(Z̃†)
∥∥∥

Hk(Ω)

Δt
+

2
∥∥∥∇Fn+1

h (Z̃†) −∇Fn+1(Z̃†)
∥∥∥

Hk(Ω)

Δt

+
4
∥∥∥∇F

n+1/2
h (Z̃†) −∇Fn+1/2(Z̃†)

∥∥∥
Hk(Ω)

Δt
+

2
∥∥∥∇Fn+1/2(Z̃†) −∇Fn(Z̃†)

∥∥∥
Hk(Ω)

Δt

+
2
∥∥∥∇Fn+1/2(Z̃†) −∇Fn+1(Z̃†)

∥∥∥
Hk(Ω)

Δt
·
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Therefore, using the inverse inequality (3.4), the approximation property (3.2) and assuming that h/Δt is
bounded, we get

∥∥∥∇∂tFh(t†, Z̃†)
∥∥∥

Hk(Ω)
≤ C

∥∥∥∇∂tF (·, Z̃†)
∥∥∥

L∞(0,T ;Hk(Ω))
+

C ‖fn
h − fn‖Hk+1(Ω)

Δt

+
C
∥∥∥fn+1/2

h − fn+1/2
∥∥∥

Hk+1(Ω)

Δt
+

C
∥∥fn+1

h − fn+1
∥∥

Hk+1(Ω)

Δt

≤
C ‖fn

h − fn‖Hk(Ω)

hΔt
+

C
∥∥∥fn+1/2

h − fn+1/2
∥∥∥

Hk(Ω)

hΔt
+

C
∥∥fn+1

h − fn+1
∥∥

Hk(Ω)

hΔt
+ C.
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