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A Detailed illustration of the 1:2 MMR crossing of Jupiter and Saturn.

The top panel shows the semi-major axis of Saturn (blue/red curve) and the
exact location of the 1:2 MMR with Jupiter (black curve) as functions of time. The

dotted vertical line marks the time of resonance crossing at ¢t = 1.72 My.

The bottom panels show the dynamical structure of the 1:2 resonance for
Jupiter (left) and Saturn (right) respectively. The natural way to represent the
resonance dynamics is with polar coordinates, with the eccentricity e as the radius
and the so-called critical argument of the resonance ¢ as the angle. In this case,
the critical argument of the resonance felt by Jupiter is 07 = Ay — 2Ag + ws while
that of the resonance felt by Saturn is og = Ay — 2As + wg, where A and w are
the mean longitude and the longitude of perihelion, respectively, and the index J/S
refers to Jupiter/Saturn (see chapter 9 of [S1]). The curves in the bottom panels

are free hand illustrations of the dynamics near and inside the resonance. The green
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curves represent orbits in the non-resonant regions. There are two of such regions.
Region I, at small eccentricity, is called the region of ‘apocentric libration’ or ‘inner
circulation’, while Region III, at large eccentricity (e & 0.05), is called the region
of ‘external circulation’. The banana-shaped violet curves represent orbits in the
resonant Region II. Along these orbits the critical angle o librates. The border
between all three regions is the black self-crossing curve, called the ‘separatrix’.
Regions I and III only touch each other at the crossing point (or X point) of the

separatrix, which is an unstable equilibrium point of the dynamics.

As the planets approach exact resonance during migration, the X point moves
toward smaller eccentricities, i.e. Region I shrinks and Region III grows. Adiabatic
theory [S2-S4] predicts that Jupiter and Saturn should continue to evolve in Region I
(blue dots in the bottom panels, which correspond to the temporal evolution in the
top panel before t = 1.72 My), until Region I shrinks so much that its area becomes
smaller than that filled by the planets’ evolution. When this occurs, the X point
touches the region inhabited by the planet. The curves drawn in the bottom panels
are intended to represent a snapshot of the dynamics at this exact instant. At this
time, the planets must jump from Region I to Region III (red dots), by passing
through the ‘X’ point. This, in turn, causes a jump in eccentricity. Because of
the conservation of the actions 2,/a; — m and /ags — 2\/m , the
jumps of the eccentricities are correlated with a jump of the semi-major axes ay, as.
The jump of ag is visible in the top panel at the transition from the blue to the red

color.

The amplitude of the eccentricity jump can be quantitatively predicted from the
shape of the separatrix curve at the moment of resonance crossing, and is a function
of the planetary masses. Thus, the eccentricity excitation mechanism advocated
in the main text is a deterministic one, which explains why all our simulations

gave similar results (the differences being due to the evolution after the resonance
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crossing, which depends on the interactions of Jupiter and Saturn with the ice giants
and the disk particles). We emphasize that this resonance jumping occurs because
the planets migrate in divergent directions. If the two planets were approaching
each other, adiabatic theory predicts that they could be trapped in resonance (i.e.
enter into Region II) (see [S5] for an example).

To illustrate the resonance crossing dynamics in detail and avoid additional
‘noise’, the simulation presented here is not one of the simulations presented in the
main text. It has been performed by integrating the equations of motion of the
Sun-Jupiter-Saturn system alone (no disk, no ice giants), with an additional drag
force acting on the planets, using a now standard technique [S5]. The drag force
was designed so to force the two planets to migrate at the same rate as seen in our

N —body simulations.
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